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Abstract— A new method for ultrawideband termination of

waveguides in finite-difference time-domain (FD-TD) grids is
presented. The Berenger perfectly matched layer (PML) ab-

sorbing boundary condition is applied to terminate both perfect
electrically conducting (PEC) and dielectric waveguides in two
dimensions. Reflections of less than –75 dB are obtained over
the entire propagation regime. Evidence is presented that the
PML ABC is effective even for the evanescent energy present

below cutoff in PEC waveguides and the multimode propagation
present in dielectric waveguides.

I. INTRODUCTION

T HE finite-difference time-domain (FD-TD) method is

increasingly being used to model the electromagnetic

behavior of not only open-region scattering problems, but

also propagation of waves in microwave and optical circuits.

An outstanding problem here is the accurate termination of

guided-wave structures extending beyond the FD-TD grid

boundaries. The key difficulty is that the propagation in

a waveguide can be multimodal and dispersive, and the

absorbing boundary condition (ABC) utilized to terminate

the waveguide must be able to absorb energy having widely

varying transverse distributions and group velocities, Vg.

Typical FD-TD ABC’s developed for free-space problems

include one-way wave equations [1], error-cancelling super-

absorbers [2], outgoing wave annihilators [3], and the Liao

theory [4]. When applied to terminate dispersive guided wave

structures, such ABC’s perform best for narrowband en-

ergy propagation where Vg is well defined. Recently, these

ABC’s have been specialized to account for variations of

the waveguide modal Wg with frequency. For example, [5]

reported the use of a composite ABC operator consisting

of N multiplicative first-order linear differential terms. This

operator annihilates a propagating pulsed mode at all points

along a transverse plane of the waveguide at a set of N desired
frequencies, {~i }. within the pulse spectrum, corresponding to

a set of IV analytically calculable group velocities, {vg(~,) }.

The number of frequencies at which the annihilation is exact,

and thus the bandwidth of the resulting ABC can be increased
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by adding additional

operator. A variation

multiplicative terms to the composite

of this approach was reported in [6]

that approximated the exact vi(f) with either a linear or

a second-order Pad6 expression. Reference [7] derived a

rigorous analytical termination by Laplace transformation of

the exact Vg(~). However, this algorithm is global in time,

requiring the evaluation of a convolution integral for each

mode.

This letter reports a new approach employing a numerical

analog of a nonphysical material absorber to yield a robust

dispersive ABC for FD-TD simulation of guided-wave sys-

tems. This approach is based on the recent Berenger perfectly

matched layer (PML) concept [8], [9]. The new approach has

the advantages of being local in time and space, general, and

extremely accurate over a wide range of group velocities. It

requires no knowledge of the modal distribution or dispersive

nature of the propagating field.

II. METHOD

The Berenger PML ABC provides a means to terminate

FD-TD grids essentially without reflection using a nonphysical

lossy medium adjacent to the outer grid boundary. Within the

PML. certain field components are split into subcomponents.

This splitting introduces an additional degree of freedom in

specifying material parameters that permits waves of arbitrary

frequency and angle of propagation to rapidly decay and yet

maintain the velocity and field impedance of the lossless

dielectric case. The PML can thus be “perfectly matched’

to an interior medium for all wave angles and frequencies.

For 2-D and 3-D scattering models, [8] and [9] reported local

reflections of outgoing cylindrical or spherical waves by PML

as low as l/3000th those of standard ABC’s and global error

energy in the 2-D FD-TD mesh declining by 10lz.
Consider the use of PML to tertninate general waveguiding

structures for 2-D modes having the field components Ez, Ev,

and ~x. Here, the PML formulation specifies four rather than

the usual three coupled field equations because H, is split into

two subcomponents, Hz. and H,Y:

8EZ cWHzz + Hzv)
— + OYEZ =

‘d & ay
(la)

8EY d(H.. + H,y)
—+ D.EY=–

cd at 8X
(lb)
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Electric loss, tJ, and magnetic loss, CJ*,can be assigned to the

electric and magnetic field components as indicated to cause

exponential decay of propagating fields in the PML region. If

*
Oz Cr;— ~Y%—_— (3)
Ed — ~’ Ed – ~d

is enforced, where &d and ~d are the PML permittivity

and permeability, this decay can take place in a frequency-

independent manner without impacting the wave impedance

[8].

Now, consider as a specific subset of ( 1) and (2) the case of a

2-D dielectric-filled (&d, Pd) waveguide structure propagating

one or more TM modes in the +x direction. At ~~aX, the

waveguide is loaded with PML that has ar and o: matched

according to (3) along with with Cv = a; = O to permit

reflectionless transmission across the dielectric-PML interface

[8]. We assume as in [8] that the loss in the PML region

increases quadratically with depth, p. That is, the loss rises

from zero at p = O (the interface between the waveguide

dielectric and the PML load) to a maximum value of o~aX at

p = 6, the location of the conducting wall backing the PML:

()P2o(p) = omax –
6

(4)

Then, o~aX can be chosen to bound the apparent reflection

coefficient

~=e–~
(5)

to some desired low level, say 10–4. Note that the resulting

exponential decay within the PML load is so rapid that the

standard Yee time-stepping cannot be used there. Instead,

exponential time-stepping [8], [10] is used in PML media with

values of Ed and fld employed in the decay factors.

III. RESULTS

We first apply PML to an air-filled 2-D PEC parallel-

plate waveguide (Fig. l(b)) having a wall separation of 40

mm (,fCUtOff = 3.75 GHz). Excitation consists of an 83.3-

ps Gaussian pulse (FWHM) modulating a 7.5-GHz carrier

that launches an +x-directed TMI mode towards the PML

termination. The spectrum of the input pulse is shown in Fig.
l(a) akmg with the normalized Vg for the TM1 mode. Note

that the incident pulse contains significant energy below cutoff,

and that t~~ of the pulse spectral components ranges from O

to x 0.98 c. The PML is 16 grid cells thick with ar varying

quadratically from zero at the air-PML interface to 2.00 S/m

at the back PEC wall, and the associated magnetic loss, o-~,

varing from zero to 2.85x 105 Q/m. Before discrete Fourier

transformation (DFT), the reflected wave observed at the air-

PML interface is allowed to evolve over many thousands of

time steps to properly model the action of the very slowly

propagating fields having spectral components near ~cutofi,

which results in a very slowly decaying impulse response

for the PML termination. The reflection coefficient versus
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Fig. 1. Test of PML ABC for a 2-D PEC microwave waveguide propagating
a pulsed TM1 mode: (a) Excitation spectrum superimposed upon the group
veloclty versus frequency function for the TM1 mode (cutoff frequency = 3.75

GHz). (b) Waveguide/PMLgeometry and IPML reflection coefficient versus
frequency observed just outside the PML layer.

frequency is obtained by dividing the reflected spectrum by

the incident spectrum as observed at the air-PML interface.

Fig. l(b) graphs the reflection coefficient of the PML

ABC versus frequency. Reflections between –70 and –95

dB are noted at all frequency points in the DFT from the

lowest (X fcu~off/lOO) to the higest (%5.3.fcutoff). Narrow 8-

dB upwards spikes are noted at ,f = 2~cutoff, 3fcutoff, and

4,fCUtoff. This example vividly demonstrates the ability of the

PML ABC to absorb extremeIy wideband propagating energy

as well as highly reactive evanescent modes.

We next apply the PML ABC to terminate a 2-D asymmetric

dielectric slab optical waveguide (Fig. 2(b)). This consists

of a 1.5-P film of ET = 10.63 sandwiched between an

infinite substrate of s. = 9.61 and an infinite region of

air. A 17-fs (FWHM) Gaussian pulse modulating a ZOO-THZ

carrier at the left edge of the three-layer system launches

three distinct +$-directed modes with normalized frequency-

dependent propagation factors shown in Fig. 2(a). The system

is terminated by extending each dielectric layer into its match-

ing PML, region at the right side of the grid. The PML is
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Fig. 2. Test of PML ABC for a 2-D asymmetric three-layer dielectric optical

waveguide propagating three distinct modes: (a) Excitation spectrum superim-
posed upon the propagation factors for the three modes. (b) Waveguide/PML
geometry and PML reflection coefficient versus frequency observed just
outside the PML layer. Note that the substrate and air regions extend to
infinity in the transverse direction, and that optical wave energy is present in
all three regions,

again 16 cells thick with (aZ, o;) varying quadratically in the

z-direction from O at each layer-PML interface to peak values

of (1.39 x 105 S/m, 1.98 x 1010 Q/m) in the air region,

(1.48 x 106 S/m, 1.98x 1010 L?/m) in the film, and (1.34 x

106 S/m, 1.98 x 1010 fl/m) in the substrate. The composite
reflection coefficient representing total retrodirected energy in

all three regions is computed at the PML interface. Fig, 2(b)

shows reflections below –80 dB across the entire spectrum of

the incident field. This demonstrates the absorptive capability

of the PML ABC for dispersive multimodal propagation. In

this case, as well, the PML ABC absorbs the evanescent

portion of the propagating modes as well as any radiated

energy.

IV. CONCLUSION

We have demonstrated the use of the Berenger PML ABC

for highly accurate ultrawideband termination of 2-D PEC and

dielectric wavegttides in FD-TD grids. This ABC is local in

time and space and yields broadband reflection coefficients

better than –75 dB. It appears to be effective for absorption of

dispersive, multimodal, and even evanescent energy. Extension

of PML to 3-D PEC and dielectric waveguides is straightfor-

ward and will be discussed in a subsequent paper. Another

potentially useful application is for the FD-TD modeling of

problems involving the earth-air interface, a subset, in fact, of

Llll GG-lcly Cl UIGIGUL1 IL ~GU1llGL1 y U1>UU33GU llG1 G.
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