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Abstract— A new method for ultrawideband termination of
waveguides in finite-difference time-domain (FD-TD) grids is
presented. The Berenger perfectly matched layer (PML) ab-
sorbing boundary condition is applied to terminate both perfect
electrically conducting (PEC) and dielectric waveguides in two
dimensions. Reflections of less than —75 dB are obtained over
the entire propagation regime. Evidence is presented that the
PML ABC is effective even for the evanescent energy present
below cutoff in PEC waveguides and the multimode propagation
present in dielectric waveguides.

I. INTRODUCTION

HE finite-difference time-domain (FD-TD) method is
increasingly being used to model the electromagnetic
behavior of not only open-region scattering problems, but
also propagation of waves in microwave and optical circuits.
An outstanding problem here is the accurate termination of
guided-wave structures extending beyond the FD-TD grid
boundaries. The key difficulty is that the propagation in
a waveguide can be multimodal and dispersive, and the
absorbing boundary condition (ABC) utilized to terminate
the waveguide must be able to absorb energy having widely
varying transverse distributions and group velocities, vg.
Typical FD-TD ABC’s developed for free-space problems
include one-way wave equations [1], error-cancelling super-
absorbers [2], outgoing wave annihilators [3], and the Liao
theory [4]. When applied to terminate dispersive guided wave
structures, such ABC’s perform best for narrowband en-
ergy propagation where v, is well defined. Recently, these
ABC’s have been specialized to account for variations of
the waveguide modal v, with frequency. For example, [5]
reported the use of a composite ABC operator consisting
of N multiplicative first-order linear differential terms. This
operator annihilates a propagating pulsed mode at all points
along a transverse plane of the waveguide at a set of IV desired
frequencies, {f;}. within the pulse spectrum, corresponding to
a set of N analytically calculable group velocities, {vy(f,)}.
The number of frequencies at which the annihilation is exact,
and thus the bandwidth of the resulting ABC can be increased
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by adding additional multiplicative terms to the composite
operator. A variation of this approach was reported in [6]
that approximated the exact v,(f) with either a linear or
a second-order Padé expression. Reference [7] derived a
rigorous analytical termination by lLaplace transformation of
the exact v,(f). However, this algorithm is global in time,
requiring the evaluation of a convolution integral for each
mode.

This letter reports a new approach employing a numerical
analog of a nonphysical material absorber to yield a robust
dispersive ABC for IFD-TD simulation of guided-wave sys-
tems. This approach is based on the recent Berenger perfectly
matched layer (PML) concept [8], [9]. The new approach has
the advantages of being local in time and space, general, and
extremely accurate over a wide range of group velocities. It
requires no knowledge of the modal distribution or dispersive
nature of the propagating field.

II. METHOD

The Berenger PML ABC provides a means to terminate
FD-TD grids essentially without reflection using a nonphysical
lossy medium adjacent to the outer grid boundary. Within the
PML. certain field components are split into subcomponents.
This splitting introduces an additional degree of freedom in
specifying material parameters that permits waves of arbitrary
frequency and angle of propagation to rapidly decay and yet
maintain the velocity and field impedance of the lossless
dielectric case. The PML can thus be “perfectly matched”
to an interior medium for all wave angles and frequencies.
For 2-D and 3-D scattering models, [8] and [9] reported local
reflections of outgoing cylindrical or spherical waves by PML
as low as 1/3000th those of standard ABC’s and global error
energy in the 2-D FD-TD mesh declining by 10'2.

Congider the use of PML to terminate general waveguiding
structures for 2-D modes having the field components E,, 7,
and H,. Here, the PML formulation specifies four rather than
the usual three coupled field equations because H.. is split into
two subcomponents, H., and H,:

oE, _ O(H.. + H,y)
cag + o B, = B T (la)
OE, _ O(H.p+ H.y)
OH,, N _ OE,
nd It +o,H. ;= . (2a)
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0H,, N _ OE,
pa—gy + oyl = 50

(2b)

Electric loss, o, and magnetic loss, o, can be assigned to the
electric and magnetic field components as indicated to cause
exponential decay of propagating fields in the PML region. If

%
Op Oy O, Oy

€d 2%} €d Hd

(3)

is enforced, where ¢4 and py are the PML permittivity
and permeability, this decay can take place in a frequency-
independent manner without impacting the wave impedance
[8].

Now, consider as a specific subset of (1) and (2) the case of a
2-D dielectric-filled (4. pq) waveguide structure propagating
one or more TM modes in the +x direction. At .., the
waveguide is loaded with PML that has ¢, and ¢} matched
according to (3) along with with o0, = o7 = 0 to permit
reflectionless transmission across the dielectric-PML interface
[8]. We assume as in [8] that the loss in the PML region
increases quadratically with depth, p. That is, the loss rises
from zero at p = 0 (the interface between the waveguide
dielectric and the PML load) to a maximum value of o, at
p = ¢, the location of the conducting wall backing the PML.:

o =on (3]

Then, omax can be chosen to bound the apparent reflection
coefficient

*)

20max®

R=¢ e 5)
to some desired low level, say 10~*. Note that the resulting
exponential decay within the PML load is so rapid that the
standard Yee time-stepping cannot be used there. Instead,
exponential time-stepping [8], [10] is used in PML media with
values of ¢4 and 14 employed in the decay factors.

ITI. RESULTS

We first apply PML to an air-filled 2-D PEC parallel-
plate waveguide (Fig. 1(b)) having a wall separation of 40
mm (feutog = 3.75 GHz). Excitation consists of an 83.3-
ps Gaussian pulse (FWHM) modulating a 7.5-GHz carrier
that launches an +z-directed TM; mode towards the PML
termination. The spectrum of the input pulse is shown in Fig.
1(a) along with the normalized v, for the TM; mode. Note
that the incident pulse contains significant energy below cutoff,
and that v, of the pulse spectral components ranges from 0
to &~ 0.98 ¢. The PML is 16 grid cells thick with ¢, varying
quadratically from zero at the air-PML interface to 2.00 S/m
at the back PEC wall, and the associated magnetic loss, o7,
varing from zero to 2.85x 10° Q/m. Before discrete Fourier
transformation (DFT), the reflected wave observed at the air-
PML interface is allowed to evolve over many thousands of
time steps to properly model the action of the very slowly
propagating fields having spectral components near feuioft,
which results in a very slowly decaying impulse response
for the PML termination. The reflection coefficient versus
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Fig. 1. Test of PML ABC for a 2-D PEC microwave waveguide propagating
a pulsed TM; mode: (a) Excitation spectrum superimposed upon the group
velocity versus frequency function for the TMy mode (cutoff frequency = 3.75
GHz). (b) Waveguide/PMLgeometry and PML reflection coefficient versus
frequency observed just outside the PML layer.

frequency is obtained by dividing the reflected spectrum by
the incident spectrum as observed at the air-PML interface.

Fig. 1(b) graphs the reflection coefficient of the PML
ABC versus frequency. Reflections between —70 and —95
dB are noted at oll frequency points in the DFT from the
lowest (= feutot/100) to the higest (5.3 feutosr). Narrow 8-
dB upwards spikes are noted at f = 2fcutoffs 3fcutort, and
4 f.utorr- This example vividly demonstrates the ability of the
PML ABC to absorb extremely wideband propagating energy
as well as highly reactive evanescent modes.

We next apply the PML ABC to terminate a 2-D asymmetric
dielectric slab optical waveguide (Fig. 2(b)). This consists
of a 1.5~y film of £, = 10.63 sandwiched between an
infinite substrate of &, = 9.61 and an infinite region of
air. A 17-fs (FWHM) Gaussian pulse modulating a 200-THz
carrier at the left edge of the three-layer system launches
three distinct +-z-directed modes with normalized frequency-
dependent propagation factors shown in Fig. 2(a). The system
is terminated by extending each dielectric layer into its match-
ing PML region at the right side of the grid. The PML is
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Fig. 2. Test of PML ABC for a 2-D asymmetric three-layer dielectric optical
waveguide propagating three distinct modes: (a) Excitation spectrum superim-
posed upon the propagation factors for the three modes. (b) Waveguide/PML
geometry and PML reflection coefficient versus frequency observed just
outside the PML layer. Note that the substrate and air regions extend to
infinity in the transverse direction, and that optical wave energy is present in
all three regions.

again 16 cells thick with (o,, o) varying quadratically in the
z-direction from 0 at each layer-PML interface to peak values
of (1.39 x 10% S/m, 1.98 x 10° Q/m) in the air region,
(1.48 x 106 S/m, 1.98x 10'° Q/m) in the film, and (1.34 x
10% S/m, 1.98x 10'® Q/m) in the substrate. The composite
reflection coefficient representing total retrodirected energy in

all three regions is computed at the PML interface. Fig. 2(b)
shows reflections below —80- dB across the entire spectrum of
the incident field. This demonstrates the absorptive capability
of the PML ABC for dispersive multimodal propagation. In
this case, as well, the PML ABC absorbs the evanescent
portion of the propagating modes as well as any radiated
energy.

IV. CONCLUSION

We have demonstrated the use of the Berenger PML ABC
for highly accurate ultrawideband termination of 2-D PEC and
dielectric waveguides in FD-TD grids. This ABC is local in
time and space and yields broadband reflection coefficients
better than —75 dB. It appears to be effective for absorption of
dispersive, multimodal, and even evanescent energy. Extension
of PML to 3-D PEC and dielectric waveguides is straightfor-
ward and will be discussed in a subsequent paper. Another
potentially useful application is for the FD-TD modeling of
problems involving the earth-air interface, a subset, in fact, of
the three-layer dielectric geometry discussed here.
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